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AN EXPERIMENTAL DOCUMENTATION OF A HYPERSONIC 

SHOCK-WAVE TURBULENT BOUNDARY LAYER 

INTERACTION FLON -WITH AND WITHOUT SEPARATION 

M. I .  Kussoy and C.  C. Horstman 

Ames Research Center 

SUMMARY 

An experiment, thoroughly documenting the  flow f i e l d  r e su l t i ng  from t h e  
in te rac t ion  of a shock wave with a nonadiabatic hypersonic turbulent  boundary 
layer ,  is described. Detailed mean flow and surface da ta  a r e  presented f o r  
two shock s trengths r e su l t i ng  i n  attached and separated flows, respect ively.  
The surface measurements include cont inuoiis pressure,  shear and heat-f lux 
d i s t r i bu t ions  upstream, i n ,  and downstream of t he  in t e rac t ion  regions. A t  
c losely spaced in t e rva l s  along t h e  surface,  boundary-layer p ro f i l e s  of s t a t i c  
and p i t o t  pressure and t o t a l  temperature were obtained from which ve loc i ty ,  
density and s t a t i c  temperature p r o f i l e s  were derived. The data  a r e  presented 
i n  both graphical and t abu la r  form. These da t a  a r e  of s u f f i c i e n t  d e t a i l  t o  
va l ida te  advanced computer codes and t h e i r  associated turbulence models. 

INTRODUCTION 

A s  a r e s u l t  of t h e  recent  rapid advance i n  computational f l u i d  dynamics, 
it i s  now possible  t o  obtain solut ions t o  complex flow f i e l d s  using t h e  time 
averaged Navier-Stokes equations. However, the  pacing item f o r  successful 
solut ions t o  s t rongly coupled viscous-inviscid turbulent  flows i s  turbulence 
modeling. To va l ida t e  o r  develop new turbulence models one must r e l y  on 
thoroughly documentated experimental flow f i e l d s .  To provide su f f i c i en t  
experimental d e t a i l  f o r  va l ida t ing  comput.er codes o r  turbulence models, t h e  
minimum requirements f o r  an experiment must include surface measurements of 
pressure,  shear and heat f l ux  as  well a s  mean flow p ro f i l e s .  Fluctuating 
measurements a r e  necessary i f  higher order turbulence model c losure schemes 
a re  t o  be evaluated. For high-speed compressible flow t h e  zero pressure 
gradient case has been experimentally examined i n  great  d e t a i l .  However, f o r  
flows with pressure gradient or  separat ion the re  a r e  only a few examples of 
documented flow f i e l d s  ( re fs .  1, 2, and 3 ) .  Unti l  more experimental flows 
a r e  documented over a wide range of t e s t  conditions,  t he  development of 
generalized turbulence models f o r  iiows w i t n  severe viscous-iriviscid i i i t e r -  
act ions w i l l  remain unresolved. 

This paper presents  experimental da ta  f o r  two shock-wave turbulent  
boundary-layer i n t e rac t ion  flows, one with separat ion and one without. The 
measurements include surface pressure,  shear  and heat f lux ,  and de t a i l ed  



p r o f i l e s  of p i t o t  and s t a t i c  pressure and t o t a l  temperature throughout t h e  
in te rac t ion  region. The da t a  should provide t h e  de ta i led  information neces- 
sary t o  va l ida te  many of the  new computer codes and turbulence models cur- 
r en t ly  being developed. 

SYMBOLS 

P 
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P I N F  

q 

r 

RHO 

Pa0 INE 

RHOU 

RHOU I N F  

T 

T I N F  

TT 

TT I N F  

u,  u 

U I N F  

X 

Mach number 

pressure 

s t a t i c  pressure 

loca l  free-stream s t a t i c  pressure ahead of i n t e rac t ion  

heat f l ux  

r a d i a l  coordinate,  dis tance from model cen te r l i ne  

dens it y 

loca l  free-stream densi ty  ahead of i n t e rac t ion  

mass f l ux  (pu) 

local  free-stream mass f lux  ahead of i n t e rac t ion  

temperature 

loca l  free-stream s t a t i c  temperature ahead of i n t e rac t ion  

s tagnat ion temperature 

loca l  free-stream t o t a l  temperature ahead of i n t e rac t ion  

ve loc i ty  companent i n  ax ia l  d i r ec t ion  

loca l  free-stream ve loc i ty  ahead of in te rac t ion  

ax ia l  coordinate,  dis tance from leading edge o F  shock-wave 
generator 

dr stance normai t o  modei s ~ r f a c e  

wedge angle of shock-wave generator 

boundary-layer thickness 



compressible dis?lacttlent thickness, 

kinematic displacement thickness, 

compressible momentum thickness, 

kinematic momentum thickness, 

density 

shear stress 

SUBSCRIPTS 

corrected 

edge of boundary layer 

initial value 

measured 

stagnation conditions 

wind-tunne 1 stagnation conditions 

wzll 

local free-stream ahead of interaction 



DESCRIPTION OF EXPERIMENT 

F a c i l i t y  

The experiment was cocducted i n  t h e  Ames 3.5-Foot Hypersonic Wind Tunnel 
where heated high-pressure  a i r  flows through a 1.067-111 diameter t e s t  s e c t i o n  
t o  low pressure  spheres.  The nominal f ree - s t ream t e s t  condi t ions  were: 
t o t a l  temperature = 6 9 5 ' ~ ,  t o t a l  p ressure  = 34 atm, f ree-s t ream u n i t  
Reynolds number = 10.9 x l o 6  m-I  , f ree-s t ream Mach number = 7 . 2 .  The t e s t  
core  diameter was approximately 0.7  m with an a x i a l  Mach number g rad ien t  l e s s  
than 0.12 m-l. Useful t e s t  t ime was 3 ~nin .  Run t o  run v a r i a t i o n s  i n  p res -  
su re  and Mach number were l e s s  than 0.5 pe rcen t ,  However, t h e  wind tunne l  
t o t a l  temperature v a r i e d  up t o  50' K from run t o  run and a l s o  dur ing a s i n g l e  
run it var ied  about 50" K over t h e  3 min t e s t  time. These v a r i a t i o n s  
requ i red  s p e c i a l  d a t a  reduc t ion  procedures which w i l l  be discussed l a t e r .  
Free-stream f l u c t u a t i o n  measurements, r epor ted  i n  r e f e r e n c e  4 ,  have been 
made i n  t h i s  f a c i l i t y  a t  t h e  above nominal t e s t  cond i t ions .  The average 
t o t a l  temperature and mass-flow f l u c t u a t i o n s  were 0.83 and 2 . 7  pe rcen t ,  
7 espec t ive ly .  

Model 

The t e s t  model cons i s ted  o f  a cone-ogive c y l i n d e r ,  3 . 3  m long and 0.203 m 
i n  diameter and an annular shock-wave genera to r ,  0.51 m o u t s i d e  diameter ,  
mounted concen t r i c  with t h e  cy l inder  ( f i g .  1 ) .  The e n t i r e  model was water-  
cooled maintaining a constant  su r face  temperature  a t  300' 25' K dur ing a run. 
Interchangeable ins t rumentat ion p o r t s ,  12 cm i n  diameter and s p e c i a l l y  con- 
toured t o  f i t  f l u s h  wi th  t h e  c y l i n d r i c a l  s u r f a c e ,  were loca ted  a t  25 cm 
i n t e r v a l s  along t h e  c y l i n d e r  i n  a s i n g l e  l i n e  and every 50 cm i n  another  
s i n g l e  l i n e  180" away. Individual  p o r t s  were instrumented with s t a t i c  pres-  
s u r e  t a p s ,  thermocouples, o r  a s k i n  f r i c t i o n  balance,  One p o r t  accommodated 
a survey mechanism t o  which s t a t i c  and t o t a l  p ressure  and t o t a l  t e x p e r a t u r e  
probes could be a t t ached  f o r  flow f i e l d  surveys.  Addit ional s t a t i c  p r e s s u r e  
t a p s  and thermocouples were located every 5 cm along t h e  e n t i r e  model length  
i n  a s i c g l e  l i n e  90' away from t h e  ins t rumentat ion p o r t s .  A t  s evera l  s t a -  
t i o n s  s t a t i c  p r e s s u r e  t a p s  were located every 90' around t h e  model. 

Two shock wave s t r e n g t h s  were imposed by bevel ing t h e  leading edge o f  
t h e  generator  a t  e i t h e r  7.5' o r  15' r e s u l t i n g  i n  unseparated and separa ted  
tu rbu len t  boundary l a y e r s ,  r e spec t ive ly .  The d e t a i l s  of t h e  two g e r ~ e r a t o r s  
.IL.C S ~ O W T I  in  f.lg!-e 1. Tibe l e a d i r g  edge o f  ~ a c h  genera to r  was honed sharp 
before each t e s t .  The generator  was movable i n  a d i r e c t i o n  p a r a i l e l  t o  t h e  
a x i s  of t h e  cy i inder  so i;liit t:,e cfi t i rc  i ~ t e r z c t i o r .  r en inn  0 - - - -  clnillr! he passed 
over s e l e c t e d  sunrey s t a t i o n s .  

Instrumentat  ion 

Surface Pressure.- The model s t a t i c  p ressure  t a p s ,  loca ted  along t h e  
model su r face  a s  well a s  i n  severa l  ins t rumentat ion p o r t s ,  were 0.16 cm 



inside diameter col~nected with short  lengths of s t a i n l e s s  s t e e l  t ~ b i n g  (10 t o  
15 cm long) t o  s t r a i n  gauge absolute-pressure transducers.  The transducers 
were ca l ibra ted  p r i o r  t o  the t e s t  s e r i e s  with a  dead weight t e s t e r  and several  
i n  s i t u  ca l ibra t ions  were made before se lec ted  ivns by varying the  wind-tunnel 
t e s t  sec t ion  pressure using a  manometer follower a s  a  standard. A11 ca l ib ra -  
t i ons  were l i nea r  and repeatable t o  within 1 percent.  Pr ior  t o  each run a  
transducer reading was obtained a t  t he  wind tunnel s t ~ r t i n g  pressure (approx. 
0.01 atm) t o  determi..ie the  zero o f f s e t  of t h e  gauges. A l l  t h e  transducers 
were located within the  model and water cooled. 

Surface Heat Transfer.- Surface heat t r ans fe r  was measured by t h e  
t r ans i en t  thin-sltin technique. Five instrumentation po r t s ,  using the  same 
mater ial  and thickness (1.25 cm) a s  the model t o  avoid any temperature 
d iscont inui t ies  along the model surface, were instrumented with chromel- 
alumel thermoiouples spot welded t o  the  i n t e r i o r  surfd.:e. The thermocouples 
were spaced 2.5 cm apar t  i n  a  l i n e  p a r a l l e l  t o  t he  model ax is .  One po r t ,  
0.625 cm t f i c k ,  was a l s o  instrumented with t h e r m o c ~ u p ~ e s  spaced 1.25 cm 
apart .  Dope3ding on the  thermocouple loca t ion ,  t h e  temperature r i s e  (with 
the in te rna l  model water cooling disconnected) var ied from 10' t o  SO0 K 
during 3 typ ica l  30-sec hea t - t ransfer  run. The da ta  were reduced by obtain- 
ing a  l e a s t  squares l i n e a r  f i t  of In [ (TT - Tw)/ (TT - T ) ] versus time. 

W i The var ia t ion  of t he  wind-tunnel t o t a l  temperature (TT) with time was 
included. No d iscern ib le  differences i n  t he  measured heat t r ans fe r  were 
obLained by using the  two d i f f e ren t  thickness por t s .  Calculations using t h e  
procedures out l ined by reference 5 indicated f o r  t h e  p r e s x ~ t  t e s t  conditions,  
the  i n t e r i o r  wall temperature follows t h e  ex t e r io r  wall tenperature a f t e r  
2secand t h a t  longitudinal conduction e r r o r s  a r e  l e s s  than 5 percent of t he  
measured convective heat  t r ans fe r .  Therefore no cor rec t ions  were applied t o  
the data. 

Smface Shear.- One instrumentation por t  was machined t o  accommodate a  
K i s t l e r  f l oa t ing  element sk in  f r i c t i o n  balance. The s e n s i t i v e  port ion of 
the  gauge was 0.95 cm i n  diameter by 0.05 cm th ick .  The e n t i r e  gauge was 
contoured t o  match the  radius of t he  cylinder.  Direct ca l ib ra t ions  using 
weights hung from the  sensing element were performed before and a f t e r  each 
t e s t  s e r i e s ;  they were repeatable  and i n  agreement with the  fac tory  ca l ib ra -  
t i o n  t o  within 5 percent.  In  addi t ion the gauge was equipped with a  s e l f -  
ca l ib ra t e  c o i l ,  providing an e l e c t r i c a l  ca l ib ra t ion  before and a f t c i  each 
run. These ca l ib ra t ions  were a l so  within 5 percent of t he  fac tory  ca l ibra-  
t ion ,  and an average of the  two e l e c t r i c a l  ca l ib ra t ions  were used t c  reduce 
the data  f o r  each run. Since the f loa t ing  element was Pe la t ive ly  large,  a  
buoyancy correct ion was Zecesszry t o  account f o r  t he  forces  across t he  gauge 
element due t o  t he  longitudinal pressure gradients .  

Survey Mechanism.- Flow f i e l d  surveys were obtainzd with the survey 
ncchanisn skztched i n  fig-~re 2. A ?recis ion power screw was driven by a  
stepping motor, whose shaf t  was capable of turning i n  control led increments 
as  small a s  1.8' or  any mult iple  of  1.8'. The v e r t i c a l  reso lu t ion  of t h i s  
mechanism i s  0.0003 cm. The ro ta ry  motion of t he  motor shaf t  i s  coupled t o  
the  precis ion screw with antibacklash bevel gears and the v e r t i c a l  pos i t ion  
was obtained from a three- turn precis ion potentiometer driven by an a n t i -  
backlash worn gear. 



k i t o t  Pressure Probes.- Pi to t  pressures In the  flow f i e l d  were measured 
by s t a i n l e s s  s t e e l  probes shown i n  f igure  3 .  The l a rge r  probe was used a t  
each survey s t a t i on .  Near t he  wal l ,  a smaller probe (half  s i ze )  was a l s o  
used. The second probe ( f ig .  3 ) ,  with the t i p  much c lose r  t o  t he  supporting 
s t r u t .  was used i n  the separated region t o  ensure t h a t  both the  probe and i t s  
s t r u t  were within t h e  seyarated region. This probe was a l so  used facing both 
upstream and downstrean i n  t he  separated region. The probes were ca l ibra ted  
i n  a f r e e - j e t  fac i l i t l -matching  Mach number, ve loc i ty  and densi ty  with the  
present  t e s t  conditions.  These ca l ib ra t ions  indicated t h a t  the  e r r o r s  due 
t o  ra refac t ion  e f f e c t s  were l e s s  than 1 percent;  therefore ,  no correct ions 
were applied t o  t he  p i t o t  data.  These probes were attached t o  water-cooled 
pressure transducers located within the  model with short  lengths (5 t o  10 cm) 
of s t a i n l e s s  s t e e l  tubing. The pressure transducer ca l ib ra t ion  procedure was 
iden t i ca l  t o  t he  surface pressure procedure discussed previously. 

Sta t i c  Pressure Probes.- S t a t i c  pressures  i n  t h e  flow f i e l d  were 
measured by s t a i n l e s s  s t e e l  probes shown i n  f i gu re  4. The la rger  probe was 
used a t  each survey s t a t i o n  while the  smaller probe was used i n  the sepa- 
ra ted  region facing both upstream and downstream s imi la r  t o  t he  p i t o t  probe 
measurements. These probes a r e  geometrically s imi la r  t o  those used i n  
reference 6, i. e. ,  a 10' cone-cylinder. Independent ca l ib ra t ions  t o  account 
fo r  viscous in te rac t ion  e f f e c t s  agreed with the  ca l ib ra t ion  of B~nrens  
(ref .  6). The maximum viscous correct ions applied t o  the  da ta  were 2 percent 
i n  and downstream of the  in te rac t ion  regions and 7 percent i n  the undisturbed 
region ahead of  t he  incident  shock wave. These probes were at tached t o  water- 
cooled pTessire transducers located within the  model with shor t  lengths 
(5 t o  10 cm) of s t a i n l e s s  s tee ,  tubing. The pressure transducer ca l ib ra t ion  
procedure was iden t i ca l  t o  t h e  surface pressure procedure discussed 
previously. 

Total Tempemture Pro3es.- Total temperatures i n  the  flow f i e l d  were 
measureti with the  probes shown i n  f i gu re  5. The la rger  probe was used a t  
each survey s t a t i o n  while the smaller probe was used i n  t he  separated region. 
These probes were designed using a concept suggested by Vas ( r e f .  7) .  An 
unshielded, butt-welded chromed alumel thermocouple (0.3 cm long by 0.007 cm 
thick)  i s  supported by tapered chromel and alumel posts.  A second chromel- 
alumel thermocouple is  formed a t  t he  end of t h e  alumel support (see f i g .  5 ) .  
This provides a simultaneous measurement of t he  bu t t  welded thermocouplp 
junction and the  probe support. 

Corrections f o r  r ad i a t ion ,  conduction and recovery f ac to r  were made 
following the  method of reference 7. To make these correct ions the  local  
Mach number and Reynolds number must be known, thus ,  requir ing an i t e r a t i v e  
procedure using t h e  p i t o t  and s t a t i c  pressure data.  For the  present cases ,  
rad ia t ion  correct ions were negl ig ib le .  Independent ca l ib ra t ions  of these 
prches i n  the  wind-tunnel free stream i n d i c a t e d  a maximum t o t a l  temperature 
e r ro r  of 1.5 percent.  

Test Procedure.- The t e s t  da ta  were obtained during a s e r i e s  of  runs 
with the wind tunnel operating a t  t h e  nominal conditions described above. 
Previous measurements ( r e f .  8 ) ,  without the generator ,  es tab i i shed  the  



existence of a f u l l y  developed, s e l f - s imi l a r  turbulent  boundaly with negl ig i -  
b l e  pressure gradient 100 t o  300 cm from the  m ~ d e l  t i p .  Natural t r a n s i t i o n  
from laminar t o  turbulent  flow occurred between 40 and 80 cm from the  model 
t i p .  

For the  surface pressure and shear  ~neasurenents t he  shock-wave genera- 
t o r  was moved a x i a l l y  during a run t o  obtain continuous data  alonb, the model. 
To accomplish t h i s ,  t he  generator was held i n  a la rge  frame which moved 
ax ia l ly  e i t h e r  upstream o r  downstream. See f igu re  6. I t s  speed was con- 
t r o l l e d  by a var iab le  speed motor and i t s  pos i t ion  recorded by a potentiome- 
t e r  attached t o  the  frame. The t o t a l  t r ave l  was 25 cm varying  fro^ 140 t o  
165 cm from the  madel t i p  (see f i g .  1 ) .  During a run the  generator was 
occasionally stopped t o  insure t h a t  the measurements were not affected by 
instrumentation time lags. For the surface heat t r ans fe r  and flow-field 
surveys the  generator was prepositioned a t  a f ixed a x i a l  pos i t ion  p r io r  t o  a 
run. A t  a l l  times the  shock-wave generator was located several  cm behind 
the in te rsec t ion  of the  bow shock emanating from the  nodel t i p  and the  annu- 
l a  plane of t he  generator.  For the  separated flow case sevex,al p i t o t  and 
s t a t i c  pressure runs were a l so  made keeping the  probes a t  f ixed dis tances 
from the wall and moving the  generator. 

The undisturbed boundary-layer thickness  a t  t he  incident  shock-wave 
impingement p ~ i n t  increased about 10 in  a dis tance corresponding t o  
t he  d i f fe rence  between the  f a r t h e s t  upstream and downstream posi t ioning of 
the  shock-wave generator. However, t h i s  had l i t t l e  e f f e c t  on t h e  experi-  
mental r e s u l t s  (including the  flow f i e l d  surveys) provided they were compared 
an equivalent dis tance from t h e  generator leading edge. 

Velocity, dens i ty ,  and pressure p r o f i l e s  were obtained from p i t o t  and 
s t a t i c  pressure and t o t a l  temperature surveys. Each survey was taken during 
a s ing le  t e s t  run. In t ravers ing  t h e  flow f i e l d ,  t he  probe was stopped a t  
each locat ion f o r  a few seconds t o  ensure no time lag i n  t1le pressure o r  
temperature measurement. Survey da ta  were obtained up t o  3.5 cm from t h e  
model surface except a t  t he  i n i t i a l  survey s t a t i o n s  where da ta  were obtained 
up t o  8 cm. The s t a t i c  pressure a t  the  model surface was monitored continu- 
ously during a l l  t r ave r se s  t o  ve r i fy  t h a t  t he  da ta  were f r e e  from i n t e r f e r -  
ence e f f ec t s .  

A z i s p m ~ t r y . -  Surface pressure measurements a t  se lec ted  a x i a l  pos i t ions  
were obtained a t  90' i n t e rva l s  around the  model and surface shear measure- 
ments a t  selected ax ia l  pos i t ions  180' apa r t .  Variatioqs i n  these  da ta  
around the model were within the  experimental accuracy of the  measurements. 
Also, r e s u l t s  from surface o i l  f i lm s tudies  showed symmetric separat ion and 
reattachment l i n e s  arodnd the  model fo r  the separated case and a symmetric 
incident shock l i n e  f o r  t he  at tached case. From a l l  these r e s u l t s  it was 
concluded t h a t  the flow was axisymmetrlc. 



EXPERIMENTAL RESULTS 

Local Free-Strean Conditions 

Surveys of p i t o t  and s t a t i c  pressure and t o t a l  temperature were obtained 
a t  several  a x i a l  locat ions upstream of t h e  in t e rac t ion  region f o r  both cases  
t o  determine the loca l  free-stream conditions ahead of t he  incident  shock. 
Above the  boundary layer  t he  va r i a t i on  of t h e  measurements with d is tance  from 
the  model surface (up t o  8 cm) was negl ig ib le .  The average loca l  free-stream 
values a r e  tabulated i n  t ab l e s  1 and 2 fo r  the two t e s t  flows. S l igh t  d i f -  
ferences a r e  noted between the  two cases which a r e  believed t o  be caused by 
small d i f fe rences  i n  wind-tunnel blockage. 

Flow-Field Features 

Sketches of t h e  two flow f i e l d s  constructed from survey da ta  and shadow- 
graphs taken during the experiment a r e  presented in  f igures  7 and 8. Several 
features  of the flow f i e l d s  a re  worth mentioning. Unlike most two- 
dimnsional  experiments tha t  employ long wedge-shaped generators,  the  present 
flows a r e  influenced by an expansion fan generated by the  corner of the 
she,,-wave generator.  Both flows indica te  an induced shock wave caused by a 
l i f t i n g  of t h e  boundary layer although the  s t rength of t h i s  shock wave i s  
s ign i f i can t ly  l e s s  f o r  the  attached case (a = 7.5') and eventually coalesces 
with the recompression shock f a r  downstream. For the separated case (a = 15') 
the locat ion of the  induced shock wave was unsteady due t o  t h e  unsteady nature 
of the unseparated flow. The unsteady aspects  of t h i s  flow w i l l  be discussed 
l a t e r .  

Surface Measurements 

Variations i n  surface pressure,  jhear n d  heat t r a n s f e r  with d is tances  
from the  leading edge of the  shock generator a r e  shown i n  f igures  9 and 10 
and tabulated i n  t a b l e s  3 and 4 f o r  both t e s t  flows. These da ta  a r e  average 
values obtained from many runs. Sca t t e r  bars indicat ing the  maxirmm da ta  
s c a t t e r  from run-to-run a re  shown fo r  several  locat ions a l ~ n g  t h e  cyl inder .  
In t ab l e s  3 and 4 both the  measured and corrected ( for  longi tudinal  pressure 
gradient)  values of the surface qhear a r e  presented. In f i ~ u r e s  9 and 10 the  
corrected values a r e  p lo t ted .  The surface hea t - t ransfer  data  were nct cor- 
rected f o r  the  small longitudinal conduction e r ro r s  ( l e s s  than 5 percent) but 
were corrected f o r  run-to-run va r i a t i ons  in  wind-tunnel t o t a l  temperature. 
This was done by assuming t h a t  t he  heat f l ux  divided by the dr iv ing  poten t ia l  
( T T ~  - Twi) i s  invariant  f o r  small changes i n  t o t a l  temperature. Therefore; 

The surface measurements fo r  both the  attached and separated flow cases  
show the  major fea tures  associated with a shock-wave boundary-layer interac-  
t i on ;  a steep increase of pressure (with an intermediate plateau for  the  



separated case) ;  a decrease i n  skin f r i c t i o n  (leading t o  negative values f o r  
the separated case) followed by a rapid increase;  and a corresponding increapc 
in  heat f lux.  An exception from the  usual two-dimensional experimentai 
r e s u l t s  f o r  t h i s  type of flow i s  the  rapid dzcrease in  pressure,  shear ar: 
heat f lux  downstream of t he  peak values which is  a r e s u l t  of the  expansiorl 
fan emanating from the corner formed by the  leading edge and the  bcidy of the 
shock generator. 

Separation and Reattachment 

One of the more d i f f i c u l t  aspects  of  t he  experiment was precise  de te r -  
m i n a t i ~ n  of separat ion and reattachment point  locat ions and of  values f o r  
sk in  f r i c t i o n  i n  t he  neighborhood of these  points.  One reason f o r  t h i s  was 
the  unsteadiness of t he  separated region. The unsteady fea tures  were exam- 
incd with a new diagnost ic  technique t h a t  measured the  f luc tua t ing  voltage 
from t h i n  platinum fi lms deposited on t h e  outer  surface of one of t he  ins t ru-  
mentation po r t s .  Results fo r  the  present flow have been reported previously 
(ref .  9 ) .  Brief ly,  those r e s u l t s  showed t h a t  separat ion and reattachment 
points  experienced large excursions, ind ica t ing  a maximum separat ion zone 
from x = 28 t o  39 cm. The frequency of the  unsteadiness was confined t o  a 
narrow band around 1 5  kHz. Assuming a convection ve loc i ty  equivalent t o  the 
average boundary- layer  ve loc i ty  ahead o f  separat ion,  the  s c a l e  of t he  
unsteady motion was estimated t o  be approximately equal t o  t h e  lzngth of the  
separat ion as  determined f ron  the  sk in - f r i c t i on  measurements wi;ich showed 
separat ion a t  x = 31.5 cm and reattachment a t  x = 34.0 cm. (Direct skin 
f r i c t i o n  measurements, not corrected f o r  buoyancy e f f e c t s ,  show t h i s  same 
extent of separat ion.)  The separat ion appears t o  be s imi l a r  t o  t h a t  found 
i n  incompressible flow ( r e f .  10) wherein onset and reattachment loca t ions  
a r e  in te rmi t ten t  and only when the  flow i s  reversed 50 percent of the  time 
or more w i l l  time-averaged measurements l i k e  p i t o t  pressure and skin f r i c t i o n  
ind ica te  separated flow. Additional da t a  defining the  length gf separat ion 
were obtained from forward and backward facing p i t o r  probes. fhese da ta ,  
obtained a t  fixed values of y and varying x by moving the  shock generator,  
ind ica te  a s l i g h t l y  l a rge r  separated region than the  sk in - f r i c t i on  measure- 
msnts extending from x = 30.5 t o  34.5 cm. The authors f e e l  t ha t  the  best 
estimates of t he  time-averaged separat ion poin ts  a r e  given by the  p i t o t  probe 
technique. Furthermore, the  accuracy of t h e  sk in - f r i c t i on  data  i n  the vicin-  
i t y  of these  poin ts  is  uncertain due t o  t he  unknown influence of unsteadiness 
on the f loa t ing  element balance. No sa t i s f ac to ry  explanation has been found 
f o r  the odd behavior i n  t he  sk in - f r i c t i on  da ta  j u s t  ahead of separat ion.  

Flow Field Measurements 

Velocity, densi ty ,  and pressitre p ro f i  l e s  normal t o  t h e  cyl inder  surface 
were obtained frcm p i t o t  and s t a t i c  pressure and t o t a l  temperature surveys. 
In most cases ,  more than one survey of each type measurement was obtained 
a t  each da ta  s t a t i on .  The data  presented were obtained from average values 
of t he  measured pressure and temperature interpolated a t  selected y laca- 
t ions .  The run-to-run var ia t  .ns were l e s s  than 5 percent.  To account f o r  



t he  run-to-run var ia t ion  i n  wind tunnel t o t a l  temperature, t he  measured 
values of t o t a l  temperature were corrected assuming t h a t  the r a t i o  
( 1  - Tw)/ (Toe - Tw) was invar ian t .  Therefore, 

The flow quan t i t i e s ,  Mach number, ve loc i ty ,  s t a t i c  temperature, and dens i ty ,  
were calculated assuming a c a l o r i c a l l y  imperfect, thermally per fec t  gas. 

Normalized p r o f i l e s  of s t a t i c  pressure,  ve loc i ty ,  and densi ty  a r e  pre- 
sented i n  f igures  11 and 12 f o r  the  attached (a = 7.5') and separated (a = 
15') flow cases ,  respect ively.  These da t a  along with addi t ional  f low-field 
quan t i t i e s  a r e  tabulated i n  t ab l e s  5 and 6 .  To i l l u s t r a t e  t he  d e t a i l s  of 
t h e  in t e rac t ion  regions, the  p r o f i l e  da ta  have been used t o  construct s t a t i c  
pressure,  ve loc i ty ,  and densi ty  contours and a r e  shown i n  f igures  13 and 14. 
The locat ions of t h e  incident ,  induced and recompression shock waves a r e  
e a s i l y  recognized. Further d e t a i l s  of t he  in t e rac t ion  regions a r e  shown i n  
f igures  15 and 16 where streamline contours, deduced from the  ve loc i ty  and 
densi ty  p ro f i l e s ,  a r e  given. 

The in tegra ted  values of incompressible and compressible displacement 
and momentum thicknesses ,  61 ,  6* and 0 i  and 0 ,  a r e  given f o r  the  two 
cases  i n  t a b l e s  7 and 8. Also included i s  t he  boundary-layer thickness ,  6 ,  
used f o r  t h e  upper l i m i t  of in tegra t ion .  The choice of a boundary-layer 
thickness for these types of in te rac t ion  flows i s  r a t h e r  a r b i t r a r y .  For the  
present case,  6 was chosen a s  the height a t  which +he p i t o t  pressure was a 
maxirnum in  the  in te rac t ion  region; and downstream, where the  p i t o t  pressure 
continuously increased, 6 was chosen where the  local  Mach number p r o f i l e  
nc longer had curvature and varied l i nea r ly  with d is tance  from t h e  wall. 

Experimental Uncertaint ies  

The uncer ta in t ies  i n  t he  surface pressure,  shear and heat f lux  measure- 
ments were estimated t o  be t10  percent except f o r  the shear measurements 
near separat ion f o r  t he  separated case and near the  minimm shear value f o r  
the  attached case. Here, because of t he  large buoyancy cor rec t ions ,  t k  
uncertainty is extremely high {up t o  SO percent of the  upstream undisturbed 
value) .  In  addi t ion,  t h e  unsteady aspects of t h e  turbulent  separat ion may 
cause addi t ional  unknown e r r o r s  i n  t h e  sk in - f r i c t i on  balance measurements 
near separation. For the  flow-field quan t i t i e s ,  t h e  estimated unce r t a in t i e s  
a r e  21.5 percent fo r  the t o t a l  temperature, 210 percent f o r  the  s t a t i c  pres- 
sure,  2 6  percent f o r  the s t a t i c  temperature, '12 percent f o r  the dens i ty ,  
and 23 percent f o r  the  ve loc i ty .  For the  separated case near the  wall 
( y  < 1.0 cm) i n  the  in t e rac t ion  region (x = 30 t o  36 cm), t he  uncertainty in  
ve loc i ty  i s  '8 percent ;  i n  t he  reversed flow r e g i o n ,  it is  235 percent.  The 
uncertainty i n  y is  '0.02 cm. However, t hese  unce r t a in t i e s  i n  the  flow- 
f i e l d  var iab les  a r e  due pr inc ipa l ly  t o  zero o f f s e t s  i n  t h e  pressure measure- 
ments. Since each survey was obtained with a s ing le  probe, 'he uncertail l ty 
of ~ i i e  v e r t i c a l  var ia t ion  in  these f low-field quan t i t i e s  i s  s ign i f i can t ly  
l e s s  than the numbers quoted above. 



CONCLUDING REMARKS 

Two cases of a shock-wave, hypersonic turbulent-boundary-la ye^, i n t e r -  
act ion "ow over a cone-ogive-cylinder were experimentally invest igated.  
For o:,; case the boundary layer was at tached and i n  the  other  t he  shock wave 
was of s u f f i c i e n t  s t rength  t o  separate  the  boundary layer .  The mea? flow 
f i e l d  measurenients of surface pressure,  s h e r r  and heat f l ux ,  p i t o t  and s t a t i c  
pressure and t o t a l  temperature p r o f i l e s  we: completely documented. The 
tabulated r e s u l t s  presented i n  t h i s  report  provide, i n  su f f i c i en t  d e t a i l ,  
experimental da ta  fo r  va l ida t ing  present o r  fu tu re  computer codes and/or 
turbulence models. 
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TABLE 2 

TABLE 1 

7.5' SHOCK WAVE GENERATOR 

15' SHOCK WAVE GENERATOR 

Mw = 6.71 
4 

Pa = 0.0300 kg/m3 

Poo = 607 ~ / m ~  I "= = 1129 m/s 

Too = 70.6' K 

Tw = 300' K 

Tom = 695' K 
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Figure 1 .- Test model. 
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Figure 2 . -  Survey mechanism. 
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Figure 3. -  Pitot prossure probes. 





Figure 5 .- Total temperature probes. 









Figure 9.4easurements  almg the model surface,  a = 7 . S 0 ,  Mm = 6 .71 ,  
TWITom = 0 . 4 3 .  



F i s r e  10.- Measurements along t:le model surface, a = IS0, M- = 6.86, 
Tw/To = 0 .43 .  
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